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Examples of four dimensional cusp singularities

By Hiroyasu Tsuchihashi

Abstract. We give some examples of four dimensional cusp singu-
larities which are not of Hilbert modular type. We construct them, using
quadratic cones and subgroups of reflection groups.

0. Introduction

In [8], we showed that an r-dimensional cusp singularity Cusp(C,Γ) is obtained from

a pair (C,Γ) of an open cone C in Rr and a subgroup Γ of GL(r,Z) satisfying the

following three conditions, where r is an integer greater than 1.

1. C is strongly convex, i.e., xy ⊂ C for any x, y ∈ C and C ∩ −C = {0}.
2. C is Γ-invariant, i.e., γC = C for all γ ∈ Γ.

3. Γ acts on DC := C/R>0 properly discontinuously, freely and DC/Γ is compact.

Cusp(C,Γ) is obtained by adding a point to the quotient of the tube domain Rr +√
−1C under the action of the semidirect product of Zr and Γ. In the 2-dimensional

case, Cusp(C,Γ) is nothing but a Hilbert modular cusp singularity. Hilbert modular

cusp singularities exist in all dimensions greater than 1, where C is the interior of a

simplicial cone and DC/Γ is a real torus. It is also known that there exist other higher

dimensional cusp singularities of arithmetic type (see [6] and [7, §3], for instance). We

gave in [8] some 3-dimensional explicit examples of (C,Γ) such that DC/Γ are not real

tori. In 1991, Ishida[3] gave explicit 4-dimensional examples. Until quite recently no

other 4-dimensional explicit examples seem to be found. On the other hand, Vinberg[10]

gave a way to obtain a subgroup Γ of GL(r,R) acting properly discontinuously on a

strongly convex open cone C in Rr. Here Γ is generated by reflections with respect to

the hyperplanes containing the (r − 1)-dimensional faces of a polyhedral cone satisfying

certain conditions. Moreover, he gave a simple necessary and sufficient condition for the

cone C to be quadratic, i.e., defined by a quadratic polynomial. In this paper, using the

results in [10], we give some explicit examples of 4-dimensional pairs (C,Γ) such that Γ

are subgroups of reflection groups.

In Section 1, we show that for any open strongly convex cone C in Rr, any subgroup

of GL(r,Z) preserving C, acts on DC properly discontinuously. In Section 2, we show

that if a quadratic polynomial P defines a cone C in Rr and there exists a subgroup Γ of

GL(r,Z) satisfying the above conditions, then all coefficients of P may be assumed to be

integers and P (x) ̸= 0 for any point x in Zr\{0}. In Section 3, we show that if a quadratic

cone C contains a rational polyhedral cone satisfying certain conditions, then there exists

a reflection group Γ contained in GL(r,Z) and acting on C with compact DC/Γ. In

Section 4, we study the structure of exceptional sets of resolutions of Cusp(C,Γ) for
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pairs (C,Γ) such that Γ is a subgroup of a reflection group. Finally, we give three 4-

dimensional examples of pairs (C,Γ) with quadratic C, and one with non-quadratic C

and a resolution of Cusp(C,Γ) whose exceptional set consists of 4 irreducible components.

1. Groups acting on cones

Let N be a free Z-module of rank r > 1, let M = Hom(N,Z) and let ⟨ , ⟩ : M×N −→
Z be the natural pairing. For an open cone C in NR = N ⊗R, let DC = C/R>0 and let

pC : C −→ DC be the natural projection.

Definition. ΓC = {γ ∈ GL(N) | γC = C} for an open cone C in NR.

Let C∗ = {x ∈ MR | ⟨x, y⟩ > 0 for y ∈ C \ {0}}. If C is an open strongly convex

cone in NR, then ΓC∗ = {tγ | γ ∈ ΓC}, where tγ is the element in GL(M) satisfying

⟨tγx, y⟩ = ⟨x, γy⟩ for any elements x and y in M and N , respectively.

Theorem 1. If C is an open strongly convex cone in NR, then ΓC acts on DC

properly discontinuously, i.e., {γ ∈ Γ | γS ∩ S ̸= ∅} is finite for every compact subset S

of DC .

0

C

Ξ
Ξx y p−1

C (z)

z ∈ DC

0 x

C∗

Θ∗

⟨∗, y⟩ = 1

Figure 1

Proof. Let Θ∗ be the convex hull of C∗ ∩ M and let Ξ be the boundary of {y ∈
C | ⟨x, y⟩ ≥ 1 for x ∈ Θ∗}. Then the restriction pC|Ξ : Ξ −→ DC of pC to Ξ is a

homeomorphism (see Figure 1). Let Ξx = {y ∈ Ξ | ⟨x, y⟩ = 1} for each element x in

C∗∩M . Then Ξx is closed in Ξ. Let L be the set of vertices on Θ∗. Then L is contained in

M and Ξ =
∪

x∈L Ξx. For any point y in Ξ, {x ∈ L | y ∈ Ξx} ⊂ {x ∈ C∗∩M | ⟨x, y⟩ = 1}
is finite.

Let S be a compact subset of DC . Then L0 = {x ∈ L | S ∩ pC(Ξx) ̸= ∅} is finite. If
γS∩S ̸= ∅ for an element γ in ΓC , then there exist elements x1, x2 in L0 with

tγx1 = x2.

On the other hand, K = {y ∈ C ∩ N | ⟨x1, y⟩ = c} contains linearly independent r

elements for a positive integer c. Then {γ ∈ ΓC | tγx1 = x1} ⊂ {γ ∈ ΓC | γK = K}
is a finite set. Hence {γ ∈ ΓC | tγx1 = x2} is also finite for any elements x1, x2 in L0.

Therefore, {γ ∈ ΓC | γS ∩ S ̸= ∅} is finite. □
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For an open strongly convex cone C with compact DC/ΓC , there exists a normal

subgroup Γ of ΓC with a finite index acting on DC freely. For example, we obtain such a

group as the intersection with the kernel of SL(N)→ SL(N/nN) for a suitable positive

integer n.

2. Quadratic cones

We fix a coordinate (X1, X2, . . . , Xr) of N throughout the rest of this paper. For a

homogeneous polynomial P (X1, X2, . . . , Xr) of r variables, we denote by CP the open

cone defined by

{(x1, x2, . . . , xr) ∈ NR | P (x1, x2, . . . , xr) > 0}.

Definition. We call a cone C in NR quadratic, if there exists a homogeneous

quadratic polynomial P (X1, X2 . . . , Xr) such that C is a connected component of CP .

If a quadratic cone C defined by a polynomial P is strongly convex, then the signature

of P is (1, r − 1) and C ∪ (−C) = CP .

Theorem 2. Let C be a quadratic strongly convex cone in NR defined by a polyno-

mial P . If DC/ΓC is compact, then there exists a positive real number c such that all

coefficients of cP are integers and P has no isotropic elements in N , i.e., P (x) ̸= 0 for

all x in N \ {0}.

Proof. First, we show that there exists a finite set K contained in C ∩N such that the

convex hull of pC(ΓCK) is equal to DC . Let Ξ be the boundary of the convex hull of

C ∩N and let J = Ξ ∩N . Then the convex hull of pC(J) is equal to DC . On the other

hand, J/ΓC is finite, because DC/ΓC is compact. Hence there exists a finite set K such

that ΓCK = J .

Let x be an element in K. We may assume that P (x) = 1, multiplying P by a

positive number. Then P (γx) = 1 for any element γ in ΓC . Hence all coefficients of P

are rational, by the following lemma.

Lemma. There exist m = r(r+1)
2 elements γ1, γ2, . . ., γm in ΓC and an element x in

K such that f(γ1x), f(γ2x), . . ., f(γmx) are linearly independent, where f : N −→ Zm

is the map sending (x1, x2, . . . , xr) to (x2
1, . . . , x

2
r, x1x2, . . . , xr−1xr).

Proof. Suppose that f(γ1x), f(γ2x), . . ., f(γmx) are linearly dependent for any element

x in K and any m elements γ1, γ2, . . ., γm in ΓC . Then f(ΓCx) is contained in an (m−1)-
dimensional linear subspace of Rm. It implies that there exists a homogeneous quadratic

polynomial Qx(x1, x2, . . . , xr) such that Qx(γx) = 0 for all γ in ΓC . Since K is finite,

there exists a point x0 on ∂C \ {0} such that Qx(x0) ̸= 0 for all x in K. Then there

exists a non-zero element y0 in MR such that ⟨y0, x0⟩ < 0 and that ⟨y0, γx⟩ > 0 for all x

in K and for all γ in ΓC , because there exists a hyperplane H with H ∩ ∂C = R≥0x0.

Hence DC is not equal to the convex hull of pC(ΓCK), a contradiction.

Next, suppose that P (y0) = 0 for an element y0 in N \ {0}. We may assume that y0
is primitive and that y0 ∈ ∂C. Let x0 be a vertex on the boundary of the convex hull of
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{x ∈ C∗ ∩M | ⟨x, y0⟩ = 1}, which is not empty. Then x0 ∈M and y0 ∈ Θx0 , where

Θx0 = {y ∈ C | ⟨x0, y⟩ = 1, ⟨x, y⟩ ≥ 1 for x ∈ C∗ ∩M}.

Since Θx0 is compact, Θx0 ∩N is a finite set. Hence Γ0 = {γ ∈ ΓC | γΘx0 = Θx0} is a

finite group. Therefore, pC(Θx0)/Γ0 is not compact. However, pC(Θx0) is closed in DC .

It implies that DC/ΓC is not compact. □

In the 2-dimensional case, the converse of the above theorem holds, because C =

R≥0v1 +R≥0v2 for two eigenvectors v1 and v2 in NR \NQ of an element in SL(N).

Proposition 3. An open strongly convex cone C in NR with compact DC/ΓC , is

quadratic, if and only if there exists a homomorphism f : N →M such that fR(C) = C∗

and that f ◦ γ = tγ−1 ◦ f for any element γ in ΓC .

Proof. Assume that C is quadratic, i.e., there exists a regular symmetric matrix A of

index (1, r − 1) such that C is a connected component of {x ∈ NR | txAx > 0}. We

may assume that all entries of A are integers, by Theorem 2. Let f : N → M be the

homomorphism satisfying ⟨f(y), x⟩ = tyAx. Since the index of A is (1, r − 1),

{y ∈ NR | tyAx > 0 for x ∈ C \ {0}} = C.

Therefore, fR(C) = C∗. Let γ be any element in ΓC . Then
tγAγ = A. Hence

⟨f(γy), x⟩ = t(γy)Ax = tytγAx = tyAγ−1x = ⟨f(y), γ−1x⟩ = ⟨tγ−1f(y), x⟩.

Therefore, f ◦ γ = tγ−1 ◦ f .
Conversely, assume that there exists a homomorphism f : N → M as in the propo-

sition. We define a symmetric bilinear form on NR by x · y = ⟨fR(x), y⟩ + ⟨fR(y), x⟩.
Then there exists a symmetric and integer matrix A with x · y = txAy. For any element

γ in ΓC , γx · γy = x · y, because ⟨fR(γx), γy⟩ = ⟨tγ−1fR(x), γy⟩ = ⟨fR(x), y⟩. Since

fR(C) = C∗, x · y > 0 for any points x and y in C. Hence x · x ≥ 0 for any point x

on ∂C, because the function NR ∋ x 7→ x · x ∈ R is continuous. Let Θ be the convex

hull of C ∩N . Since ∂Θ/ΓC is compact, {x · x | x ∈ ∂Θ} has the maximal value d. Let

Sd = {x ∈ NR | x · x = d}. Then Sd ∩ C ⊂ Θ. Since Θ is closed and Θ ∩ ∂C = ∅,

Sd ∩ ∂C = ∅. Hence x · x = 0 for any point x on ∂C. Therefore, C is a connected

component of {x ∈ NR | x · x > 0}. □

The above proposition can be applied to decide whether the cone C is quadratic

for a pair (C,Γ) satisfying the conditions 1, 2 and 3 in Introduction. We give an

example. Let r = 3. Let S be the surface and ∆ be its triangulation obtained from

the hexagon in Fugure 2, identifying the edges v1v2, v3v4 and v5v6 with v2v3, v4v5
and v6v1, respectively. Then χ(S) = −1 and the double Z-weight on ∆ as in Figure 2

satisfies the monodromy condition and the convexity condition (see [8, Definitions 1.3

and 1.5]). Hence we obtain a map σ : {all vertices of ∆̃} → N and a homomorphism

ρ : π1(S)→ GL(N) such that σ(γv) = ρ(γ)σ(v) for all vertices v of ∆̃ and all elements γ

in π1(S) by [8], where ∆̃ is the pull-back of ∆ under the universal covering ϖ : S̃ → S.

Let C = R>0Θ, where Θ is the convex hull of the image of σ, and let Γ = ρ(π1(S)).
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Then the pair (C,Γ) satisfies the conditions 1, 2 and 3 in Introduction. There exist

vertices ṽ1, ṽ2, . . ., ṽ6 of ∆̃ with ϖ(ṽi) = vi such that ṽ1ṽ2ṽ3, ṽ3ṽ4ṽ5, ṽ5ṽ6ṽ1 and ṽ1ṽ3ṽ5
are triangles of ∆̃. Here we may assume that σ(ṽ1) = e1, σ(ṽ3) = e2 and σ(ṽ5) = e3,

where {e1, e2, e3} is a basis of N . Let fi = σ(ṽ2i)(= 2ei + 2ei+1 − ei+2) for each i in

Z/3Z. Let Σ = {γτ | γ ∈ Γ, τ ≺ µi, i = 0, 1, 2, 3}, where µ0 = R≥0e1 +R≥0e2 +R≥0e3
and µi = R≥0ei + R≥0ei+1 + R≥0fi for i = 1, 2, 3. Then Σ is a non-singular fan with

|Σ| \ {0} = C and Γ acts on the set of 1-dimensional cones in Σ transitively, because ∆

has only one vertex. Hence we have a resolution of Cusp(C,Γ) whose exceptional set is

irreducible.
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Proposition 4. The above cone C is not quadratic.

Proof. Let γi be the elements in GL(N) sending ei, fi and ei+1 to fi, ei+1 and fi +

3ei+1 − ei, respectively for all i in Z/3Z. Then γi are in ΓC . We easily see that also

is in ΓC the element sending ei to ei+1, which we denote by δ. Let e0 = e1 + e2 + e3
and e∗0 = e∗1 + e∗2 + e∗3, where {e∗1, e∗2, e∗3} is the basis of M dual to {e1, e2, e3}. Then

δe0 = e0 and tδe∗0 = e∗0. Suppose that there exists an injective homomorphism f :

N → M satisfying f ◦ γ = tγ−1 ◦ f for any element γ in ΓC . Then f(e0) = ce∗0 for

a non-zero integer c, because any fixed point of tδ−1 is on Re∗0. We see by an easy

calculation that γie0 = 9ei + 20ei+1 − 6ei+2 and tγ−1
i e∗0 = 9e∗i + 3e∗i+1 + 23e∗i+2. Hence

γ1e0+γ2e0+γ3e0 = 23e0 and tγ−1
1 e∗0+

tγ−1
2 e∗0+

tγ−1
3 e∗0 = 35e∗0. It imlpies c = 0. Hence

C is not quadratic, by Proposition 3. □

3. Reflections

Let P be a quadratic homogeneous polynomial of r variables with the signature

(1, r − 1), and let C be a connected component of CP . Then C is strongly convex and

CP = C ∪ (−C). We assume that all coefficients of P are integers with no common

divisors greater than 1, throughout this section. Let BP : N ×N → Z be the symmetric

bilinear form with BP (x, x) = 2P (x).

Definition. x · y = BP (x, y) for elements x, y ∈ NR.

We easily see that γx · γy = x · y for any element γ in ΓC . For an element v in NR
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with v ·v ̸= 0, we define a linear transformation γv and a hyperplane Hv of NR as follows:

γv : x 7→ x− 2
x · v
v · v

v, Hv = {x ∈ NR | x · v = 0}.

We see by easy calculation that γ2
v = id, γvv = −v, γvx = x for any x in Hv and

γvx · γvy = x · y for any x, y in NR. Hence γvC = C or −C. If v · v < 0, then γvC = C,

because C ∩Hv ̸= ∅. Hence we have:

Proposition 5. If v is an element in N with v · v < 0 and 2
ei · v
v · v

∈ Z for each

fundamental vector ei, then γv is in ΓC .

Any element v in N with v ·v = −2 satisfies the assumption of the above proposition.

Let Fγ = {x ∈ C | γx = x} for an element γ in ΓC .

Proposition 6. Let γ be an element in ΓC with Fγ ̸= ∅ and dimFγ = r− 1. Then

there exists an element v in N with γ = γv.

Proof. r − 1 of the eigenvlues of γ are equal to 1. The other is equal to −1 and

γ2 = 1, by Theorem 1. Hence there exists a non-zero element v in N with γv = −v.
For any element x in NR, there exists a real number cx with x − γx = cxv, because

γ(x − γx) = −(x − γx). On the other hand, γx · v = x · γv, because γ2 = 1. Hence

(x− γx) · v = 2x · v. Therefore, cx = 2x·v
v·v . □

Here we note that an eigenvector h of γv corresponding to the eignevalue −1 and the

linear function α on NR with α(h) = 2 and vanishing on Hv in [10], are nothing but v

and the function α(x) = 2v · x/v · v, respectively.

Proposition 7. Let v and w be elements in N with v · v < 0 and w · w < 0. If
v·w√

−v·v
√
−w·w = 0, 1

2 ,
1√
2
or

√
3
2 , then |γvγw| = 2, 3, 4 or 6, respectively, and λ = {y ∈

NR | v · y ≥ 0, w · y ≥ 0} is a fundamental domain of the action of ⟨γv, γw⟩ on NR.

Proof. We may assume that v · v = w · w = −1 replacing v and w with v/
√
−v · v

and w/
√
−w · w, respectively. Assume that v · w =

√
3/2. Then γvγw sends v and w to

2v +
√
3w and −

√
3v − w, respectively. Hence |γvγw| = 6. Moreover,

λ = R≥0(−2v −
√
3w) +R≥0(−

√
3v − 2w) + {y ∈ NR | v · y = w · y = 0}.

We see by easy calculation that r − 2 ≤ dim(γλ ∩ λ) ≤ r − 1 for any γ in ⟨γv, γw⟩ \ {1}.
For the other cases, calculation is easier. □

If v·w√
−v·v

√
−w·w = − 1

2 ,−
1√
2
or −

√
3
2 , then |γvγw| = 3, 4 or 6, respectively, however,

dim(γvγwγvλ ∩ λ) = r. Let σ be an r-dimensional rational polyhedral cone. For each

(r − 1)-dimensional face τ of σ, we denote by v(τ) the unique primitive element v in N

determined by the condition that v · y = 0 for all points y in τ and v · y ≥ 0 for all points

y in σ.



Examples of four dimensional cusp singularities 7

Theorem 8. If there exists an r-dimensional rational polyhedral cone σ satisfying

the following three conditions, then pC(σ \ {0}) is a fundamental domain of the action

of Γ on DC , Σ = {γλ | γ ∈ Γ, λ ≺ σ} is a fan and |Σ| = C ∪ {0}, where Γ = ⟨γv(τ) | τ ≺
σ,dim τ = n− 1⟩.

1. σ \ {0} ⊂ C.

2. v(τ) · v(τ) < 0 and γv(τ) ∈ ΓC for any (r − 1)-dimensional face τ of σ.

3. v(τ)·v(µ)√
−v(τ)·v(τ)

√
−v(µ)·v(µ)

= 0, 1
2 ,

1√
2
or

√
3
2 for any (r − 1)-dimensional faces τ and µ

of σ with dim(τ ∩ µ) = r − 2.

Proof. We can define distance vw on SC = {v ∈ C | v ·v = 1} ≃ DC by cosh vw = v ·w
and angle ∠HC

v HC
w of two hyperplanes HC

v = Hv ∩ SC and HC
w = Hw ∩ SC on SC by

cos∠HC
v HC

w = v·w√
−v·v

√
−w·w for v, w ∈ NR with v · v < 0, w ·w < 0. Then we may regard

DC as a hyperbolic space and (pC)R (σ \{0}) as a Coxeter polyhedron, by the conditions

2, 3 and Proposition 7. Hence we see by [4, Theorem 7.1.3] that the assertions of the

theorem hold. □

4. Structure of exceptional sets

We keep the notations and the assumptions in the previous section. Let σ be an

r-dimensional rational polyhedral cone satisfying the conditions of Theorem 8. Let W =

TNemb(Σ) be the toric variety associated to the fan Σ in Theorem 8. For a cone τ ̸= {0}
in Σ, we denote by V (τ) the closure of orb(τ) in W , which is a compact toric variety

(see [5, Corollary 1.7]). Let ord : TN → NR be the homomorphism induced by − log | | :
C× → R. Let Ũ be the interior of the closure of ord−1(C) in W and let X̃ = W \ TN .

Then Ũ is an open neighborhood of X̃. Let Γ0 be a subgroup of Γ with a finite index

acting on DC freely. Then Γ0 acts on Ũ freely. Let U = Ũ/Γ0 and let X = X̃/Γ0. Then

the cusp singularity Cusp(C,Γ0) is obtained by contracting X to a point in U (see [8]).

Let λ be a face of σ with 1 ≤ s := dimλ ≤ r − 2, and let pλ : N → N/(Rλ ∩ N)

be the natural projection. Let µ1, µ2, . . ., µl be the (r − 1)-dimensional faces of σ

with λ ≺ µi and let Γλ = ⟨γv(µi) | i = 1, . . . , l⟩. Then Γλ acts on N/(Rλ ∩ N). Let

Σλ = {(pλ)R (τ) | τ ∈ Σ, λ ≺ τ}. Then Σλ is a Γλ-invariant fan inN/(Rλ∩N). Moreover,

V (λ) ≃ TN/(Rλ∩N)emb(Σλ), by [5, Corollary 1.7]. Hence V (λ) is non-singular, if and

only if so is (pλ)R(σ).

Now, assume that (pλ)R (σ) is non-singular, i.e., (pλ)R (σ) = R≥0w1+R≥0w2+ · · ·+
R≥0wr−s for a basis {w1, w2, . . . , wr−s} of N/(Rλ∩N). Then there exist elements u1, u2,

. . . , ur−s in N ∩ σ with wi = pλ(ui). Let {ur−s+1, . . . , ur} be a basis of Rλ ∩N . Then

{u1, u2, . . . , ur} is a basis of N . Moreover, so is {u1, . . . , ui−1, γv(µi)ui, ui+1, . . . , ur},
because γv(µi) is in GL(N) and γv(µi)uj = uj if i ̸= j. Hence there exist integers ci,j
(1 ≤ i ≤ r − s, 1 ≤ j ≤ r) with

ui + γv(µi)ui + ci,1u1 + · · ·+ ci,i−1ui−1 + ci,i+1ui+1 + · · ·+ ci,rur = 0.

Therefore,

wi + γv(µi)wi + ci,1w1 + · · ·+ ci,i−1wi−1 + ci,i+1wi+1 + · · ·+ ci,r−swr−s = 0.
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These numbers ci,j determine the structure of V (λ). Especially, when s = r − 3, they

are nothing but double Z-weights in [5, 1.7]. We easily see that ci,j ≤ 0. Moreover,

|γv(µi)γv(µj)| = +∞, if ci,j ≤ −2 and cj,i ≤ −2, ci,j = −1 and cj,i ≤ −4 or ci,j = 0

and cj,i ̸= 0. Hence if v(µi) · v(µj)/
(√
−v(µi) · v(µi)

√
−v(µj) · v(µj)

)
= 0, 1

2 ,
1√
2
or

√
3
2 ,

then {ci,j , cj,i} = {0}, {−1}, {−1,−2} or {−1,−3}, respectively, by Proposition 7.

We explain some examples of V (λ) for the convenience of the next section. First,

we consider the case s = r − 2 and (pλ)R (σ) is non-singular. If c1,2 = c2,1 = 0, then

V (λ) ≃ P1 ×P1. If c1,2 = c2,1 = −1, then V (λ) ≃ S6. If c1,2 = −1 and c2,1 = −2 (resp.

−3), then V (λ) ≃ S8 (resp. S12). Here Si are toric surfaces obtained from Coxeter

groups as follows (see [2, 5.1] for the definition of Coxeter group). For each i = 6, 8, 12,

let Gi be a subgroup of GL(2,Z) generated by two elements g1 and g2,i defined by

g1 =

(
−1 0

1 1

)
, g2,6 =

(
1 1

0−1

)
, g2,8 =

(
1 2

0−1

)
, g2,12 =

(
1 3

0−1

)
.

Then Gi are Coxeter groups with |Gi| = i. Let Λi = {faces of gR2
≥0 | g ∈ Gi}. Then

Λi is a non-singular fan for each i. Let Si = TZ2emb(Λi) be the compact toric surface

associated to the fan Λi. Then the complement of the algebraic torus in S6, is a cycle of

6 rational curves with the self-intersection numbers all equal to −1. The complement of

the algebraic torus in S8 (resp. S12), is a cycle of 8 (resp. 12) rational curves with the

self-intersection numbers repeating −1, −2 (resp. −1, −3).
Next, we consider the case s = r − 3 and assume that (pλ)R (σ) is non-singular

except the case (7). We denote by Vi the toric variety V (λ) in (i), which appears in the

following sections as an irreducible component of the exceptional set of a resolution of

4-dimensional cusp singularities.

0

-1

-1
0

-2
0

-1

-1
-20

-1

-1

-2

0

-1

-1
-2 0

-1
-1

0 -1 -1 0
0

-1

-1
0

-1
0

-2

-1
-10

-2

-1

-1

0

-2

-1
-1 0

-2
-1

0 -1 -1 0

0 -1 -1 0

-1

-1 0

-1
-1

0
-1

-1

-1

0
0
-1

-1

-1

0
-1

Figure 3 Figure 4 Figure 5

(1a) If c1,2 = c2,1 = 0, c1,3 = c3,1 = c3,2 = −1, c2,3 = −2, then the complement of the

algebraic torus in V1a, consists of 26 toric surfaces 6, 8 and 12 of which are biholomorphic

to S8, S6 and P1×P1, respectively (see Figure 3). The self-intersection numbers (E|V )
2

in irreducible components V ≃ S8 of rational curves E = V ·W , are equal to −2 and −1,
if W ≃ P1 ×P1 and S6, respectively.

(1b) If c1,2 = c2,1 = 0, c1,3 = c3,1 = c2,3 = −1, c3,2 = −2, then the complement of the

algebraic torus in V1b, consists of 26 toric surfaces 6, 8 and 12 of which are biholomorphic

to S8, S6 and P1×P1, respectively (see Figure 4). The self-intersection numbers (E|V )
2
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in irreducible components V ≃ S8 of rational curves E = V ·W , are equal to −1 and −2,
if W ≃ P1 ×P1 and S6, respectively.

(2) If c1,2 = c2,1 = 0, c1,3 = c3,1 = c3,2 = c2,3 = −1, then the complement of the

algebraic torus in V2, consists of 14 toric surfaces 8 and 6 of which are biholomorphic to

S6 and P1 ×P1, respectively (see Figure 5).

(3) If c1,2 = c2,1 = c1,3 = c3,1 = 0, c2,3 = c3,2 = −1 then V3 ≃ P1 × S6.

(4) If c1,2 = c2,1 = c1,3 = c3,1 = 0, c2,3 = −1, c3,2 = −2 then V4 ≃ P1 × S8.

(5) If c1,2 = c2,1 = c1,3 = c3,1 = 0, c2,3 = −1, c3,2 = −3 then V5 ≃ P1 × S12.

(6) If ci,j = 0 for all i, j, then V6 ≃ P1 ×P1 ×P1.

(7) If (pλ)R (σ) is simplical, v(µi) · v(µj) = 0 for 1 ≤ i < j ≤ 3 and u1 = f1,

u2 = f1+2f2, u3 = f3 for a basis {f1, f2, . . . , fr} of N , then V7 ≃ P1×
(
P1 ×P1/(−1,−1)

)
.

5. Examples with quadratic C

We fix r = 4, throughout the rest of this paper.

Example 1. Let P (x1, x2, x3, x4) = −x2
1−x2

2−x2
3+7x2

4. Let σ be the cone generated

by the following six elements in N .

u1 =


0

0

0

1

 , u2 =


7

7

0

4

 , u3 =


7

7

7

5

 , u4 =


14

7

0

6

 , u5 =


21

7

7

9

 , u6 =


7

0

0

3

 .

Let C be the connected component of CP containing u1. Then σ \ {0} ⊂ C. Let

v1 =


−1
1

0

0

 , v2 =


0

−1
1

0

 , v3 =


0

0

−1
0

 , v4 =


3

0

0

1

 , v5 =


2

2

1

1

 .

σ ∩H

u1

u2

u3

u4

u5

u6

τ1 τ5 τ4

↑ τ3

↓ τ2

Figure 6

u1,3

u1,2

u1,6

Then τi := σ ∩ Hvi (i = 1, . . . , 5) are 3-dimensional faces of σ (see Figure 6 which

shows the intersection with a hyperplane H). Moreover, we see by Proposition 5 and
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easy calculation that v(τi) = vi satisfy the conditions 2, 3 of Theorem 8. Let Σ be the

fan in Theorem 8 defined for this σ. Then V (λ) are singularities in TNemb(Σ) for all

cones λ in Σ with dimλ ≥ 2. Noting that σ∨ is spanned by i(v1), i(v2), . . ., i(v5),

where i : N → M is the homomorphism satisfying ⟨i(x), y⟩ = BP (x, y), we see that all

3-dimensional faces of σ∨ are non-singular. Let λ = R≥0u1 and let

u1,2 =


1

1

0

1

 , u1,3 =


1

1

1

1

 , u1,6 =


1

0

0

1

 .

Then {u1, u1,2, u1,3, u1,6} is a basis of N and (pλ)R(σ) = R≥0pλ(u1,2) +R≥0pλ(u1,3) +

R≥0pλ(u1,6). Moreover, we see by easy calculation that the relations u1,2 + γv2u1,2 −
u1,3 − u1,6 = 0, u1,3 + γv3u1,3 − 2u1,2 = 0 and u1,6 + γv1u1,6 − u1 − u1,2 = 0 hold.

Hence V (λ) is biholomorphic to V1a in the previous section. Since v1 · v3 = v1 · v5 = 0,

v3 · v5 = 1, v3 · v3 = −1 and v5 · v5 = −2, V (R≥0u2) is biholomorphic to V4. We see by

similar caculation that V (R≥0ui) are biholomorphic to V2, V1a, V2 and V4 for i = 3, 4, 5

and 6, respectively.

Example 2. Let P (x1, x2, x3, x4) = −x2
1 − x2

2 − x2
3 + 15x2

4. Then the cone σ defined

by v1, v2, . . ., v6, satisfies the conditions of Theorem 8, where

v1 =


−1
1

0

0

 , v2 =


0

−1
1

0

 , v3 =


0

0

−1
0

 , v4 =


5

0

0

1

 , v5 =


3

3

0

1

 , v6 =


3

2

2

1


(see Figure 7). We can verify that the divisors corresponding to the vertices attached ⃝i
are biholomorphic to Vi in the previous section. For example, v2 ·v4 = v2 ·v6 = v4 ·v6 = 0,

(Rw2 +Rwi) ∩M = Zw2 + Zwi for i = 4, 6 and [(Rw4 +Rw6) ∩M : Zw4 + Zw6] = 2,

where wi (i = 2, 4, 6) are the elements in M satisfying ⟨w2, x⟩ = BP (v2, x),

⟨w4, x⟩ = 1
5BP (v4, x) and ⟨w6, x⟩ = BP (v6, x). Hence V (τ2 ∩ τ4 ∩ τ6) is biholo-

morphic to V7, where τi = σ ∩Hvi .

τ1

↓ τ2

↑ τ3

τ4

τ6

τ5

⃝1 a

⃝2

⃝3

⃝6

⃝7

⃝7

⃝6

⃝4

Figure 7

↓ τ1

↑ τ2

τ3 ← τ4τ5

τ6

τ7

⃝4

⃝6
⃝7

⃝4
⃝4

⃝6

⃝7

⃝5
⃝5

⃝4

Figure 8

Example 3. Let P (x1, x2, x3, x4) = −3x2
1 − 3x2

2 − 5x2
3 + x2

4. Then the cone σ defined
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by v1, v2, . . ., v6, where

v1 =


1

−1
0

0

 , v2 =


−1
0

0

0

 , v3 =


0

1

0

1

 , v4 =


0

0

−1
0

 ,

v5 =


0

0

1

2

 , v6 =


0

5

6

15

 , v7 =


1

1

1

3


(see Figure 8).

6. An example with non-quadratic C

We fix a basis {e1, e2, e3, e4} of N . Let γi be the elements in GL(N) defined by the

following relations for i = 1, 2, 3, 4. γiej = ej if i ̸= j and

γ1e1 = −e1 + e2 +2e3, γ2e2 = e1 − e2 + e4, γ3e3 = e1 − e3 + e4, γ4e4 = 2e2 + e3 − e4.

Then Γ6 = ⟨γi | i = 1, 2, 3, 4⟩ is a Coxeter group with the relations: γ2
i = 1 and

(∗) (γ1γ2)
3
= (γ3γ4)

3
= (γ1γ3)

4
= (γ2γ4)

4
= (γ1γ4)

2
= (γ2γ3)

2
= 1.

Hence the Dynkin diagram of Γ6 is Figure 9 (see [2, 2.3] for the definition of Dynkin

diagram). Let σ = R≥0e1 + R≥0e2 + R≥0e3 + R≥0e4 and let τi be the 3-dimensional

face of σ which does not contain ei for each i. Then γi is a reflection with respect to

the hyperplane containing τi. Moreover, the entries aij of the Cartan matrix in [10], are

equal to −cji if i ̸= j, where cji are the coefficients in the above relations γjej =
∑

cjiei,

because 2ej −
∑

i ̸=j cjiei is an eigenvector of γj with the eigenvalue −1. Hence a14 =

a41 = a23 = a32 = 0, a12 · a21 = a34 · a43 = 1, a13 · a31 = a24 · a42 = 2. Therefore, C6 =∪
γ∈Γ6

γσ \ {0} is an open strongly convex cone in NR and Σ6 = {γτ |γ ∈ Γ6, τ ≺ σ} is a
Γ6-invariant fan with |Σ6| = C6∪{0}, by [10, Theorem 1]. Moreover, C6 is not quadratic,

by [10, Theorem 6]. Since σ is non-singular, so is TNemb(Σ6). The 3-dimensional toric

variety V (R≥0ei) is biholomorphic to V1a (resp. V1b) in Section 4 for i = 2, 3 (resp.

1, 4). The intersection V (R≥0ei) ∩ V (R≥0ej) = V (R≥0ei +R≥0ej) is the toric surface

corresponding to the Coxeter group generated by {γk, γl} for {k, l} = {1, 2, 3, 4} \ {i, j}.
Hence it is biholomorphic to P1 × P1 if (i, j) = (2, 3), (1, 4), S6 if (i, j) = (3, 4), (1, 2)

and S8 if (i, j) = (2, 4), (1, 3) by (∗). Note that V (R≥0ei) ∩ V (R≥0ej) is biholomorphic

to P1 ×P1, if and only if V (R≥0ei) and V (R≥0ej) are biholomorphic.

Remark. Let Γ′
6, Σ

′
6 and C ′

6 be the subgroup of GL(N), the fan and the cone in

NR, respectively, obtained by transposing the coefficients c2,4 = 1 and c4,2 = 2 in the

above relations γiei =
∑

cijej . Then the irreducible components of TNemb(Σ′
6) \ TN

are isomorphic to those of TNemb(Σ6) \ TN . However, they intersect to each other in

a different way. V (R≥0ei) are biholomorphic to V1a (resp. V1b) for i = 1, 2 (resp.
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3, 4). Hence V (R≥0ei) ∩ V (R≥0ej) is biholomorphic to S6, if and only if V (R≥0ei) and

V (R≥0ej) are biholomorphic. However, the following consideration for (C6,Γ6) holds

also for (C ′
6,Γ

′
6), because the relations in (∗) do not change.

Hereafter, we simply write Γ, Σ and C for Γ6, Σ6 and C6, respectively.

1

2

3

4

Figure 9

1

2

3

4

Figure 10

1

2

3

4

Figure 11

Theorem 9. There exists a subgroup Γ0 of Γ of index 48 which acts on DC freely.

Conversely, if a subgroup Γ′ of Γ acts on DC freely, then Γ′ is of index at least 48.

Let Γi = ⟨γj | 1 ≤ j ≤ 4, j ̸= i⟩ for each i. Then Γi is the stabilizer of R≥0ei
and |Γi| = 48. Hence the second assertion in the above theorem holds. Let ∆ =

{pC(τ \ {0}) | τ ∈ Σ, τ ̸= {0}}. Then ∆ is a Γ-invariant tetrahedral decomposition

of DC . If we get Γ0 in the above theorem, then ∆/Γ0 is a tetrahedral decomposition

of the 3-dimensional compact topological manifold DC/Γ
0 consisting of 48 tetrahedra.

Since ∆/Γ0 has 48 · 4/|Γi| = 4 vertices, there exists a resolution of the cusp singularity

Cusp(C,Γ0) with an exceptional set consisting of 4 irreducible components. The rest of

this section is devoted to the proof of the first assertion in the above theorem.

Let γ′
i be the elements in GL(N) defined by the following relations for i = 1, 2, 3, 4.

γ′
iej = ej if i ̸= j and

γ′
1e1 = −e1 + e2, γ′

2e2 = e1 − e2, γ′
3e3 = −e3 + e4, γ′

4e4 = e3 − e4.

Then Γ′ = ⟨γ′
i | i = 1, 2, 3, 4⟩ is a Coxeter group with the relations: γ′2

i = 1 and

(γ′
1γ

′
2)

3
= (γ′

3γ
′
4)

3
= (γ′

1γ
′
3)

2
= (γ′

2γ
′
4)

2
= (γ′

1γ
′
4)

2
= (γ′

2γ
′
3)

2
= 1

Hence the Dynkin diagram of Γ′ is Figure 10, Γ′ ≃ D3 × D3 and there

exists a surjective homomorphism q : Γ → Γ′ sending γi to γ′
i. Let

∆′ = {p(γ′τ \ {0}) | γ′ ∈ Γ′, τ ≺ σ, τ ̸= {0}}, where p : NR \ {0} → S3 is the

natural projection. Then ∆′ is a tetrahedral decomposition of S3 with 36 tetrahedra.

Let f̃ : C ∪ {0} → NR be the piecewise linear map defined by f̃(x) = q(γ)γ−1x, if

x is in γσ for an element γ in Γ. Then f̃ induces a Galois covering f : DC → S3

with f(γx) = q(γ)f(x) for any element γ in Γ, ramifying only along Ξ13 ∪ Ξ24,

where Ξij =
∪

γ′∈Γ′ p(γ′(R≥0ei + R≥0ej) \ {0}), because ⟨γi, γj⟩ are the stabilizers of

R≥0ek +R≥0el, where {k, l} = {1, 2, 3, 4} \ {i, j}, q((γ2γ4)2) = q((γ1γ3)
2
) = 1 and the

restriction of q to ⟨γi, γj⟩ is an isomorphism if (i, j) ̸= (1, 3), (2, 4). Moreover, ∆ is the

pull-back of ∆′ under f .

DC S3

S3

f -

@
@R �

��f1 f ′
1

∆ ∆′

∆1

f -

@
@R �

��f1 f ′
1

Γ Γ′

Γ′′ ⊃ Γ1

-
@
@R �

��

q

q1 q′1

Let Γ′′ = ⟨γ′′
i | i = 1, 2, 3, 4⟩, where γ′′

1 = γ′
1, γ

′′
2 = γ2, γ

′′
3 = γ′

3, γ
′′
4 = γ4. Then
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Γ′′ is a Coxeter group whose Dynkin diagram is Figure 11 and there exist surjective

homomorphisms q1 : Γ → Γ′′ sending γi to γ′′
i and q′1 : Γ′′ → Γ′ sending γ′′

i to γ′
i with

q = q′1 ◦ q1. We can define Galois coverings f1 : DC → S3 and f ′
1 : S3 → S3 such that

f ′
1(γ

′′x) = q′1(γ
′′)f ′

1(x) for any element γ′′ in Γ′′ and that f ′
1 ◦ f1 = f , in a similar way

as f . Then f ′
1 ramifies only along Ξ13, Gal(f ′

1) = ker(q′1) and ∆1 = {p(γ′′τ \ {0}) | γ′′ ∈
Γ′′, τ ≺ σ, τ ̸= {0}} is the pull-back of ∆′ under f ′

1. Let γ
′′
0 = γ′′

1 γ
′′
2 γ

′′
3 γ

′′
4 .

Lemma. There exists a normal subgroup Γ1 of ker(q′1) acting on S3 freely with

ker(q′1)/Γ1 ≃ Z2 ⊕ Z2, γ
′′3
0 ∈ Γ1 and γ′′

0Γ1γ
′′−1
0 = Γ1.

Proof. Let P be the convex hull of the 24 points
±2
0

0

0

 ,


0

±2
0

0

 ,


0

0

±2
0

 ,


0

0

0

±2

 ,


±1
±1
±1
±1


in R4. Then the boudary ∂P of P consists of 24 octahedra which are on the hyperplanes

defined by ±xi ± xj = 2 (1 ≤ i < j ≤ 4), and is a regular polyhedron of type

(3, 4, 3) (see [1, 8.2]). For example, an octahedron has 6 vertices t(2, 0, 0, 0), t(0, 2, 0, 0),
t(1, 1,±1,±1). Let □ be the barycentric subdivision of the octahedral decomposition

p(∂P) of S3 which is the image of ∂P under the projection p : R4 \ {0} → S3. Let

h : S3 → S3 be the homeomorphism induced by the linear transformation h̃ sending

e1, e2, e3 and e4 to t(1, 1, 0, 0), t(2, 1, 1, 0), t(1, 1, 1, 1) and t(2, 2, 2, 0), respectively.

Then h∆1 coincides with □, because h̃(γ′′
1 e1) = t(1, 0, 1, 0), h̃(γ′′

2 e2) = t(1, 2, 1, 0),

h̃(γ′′
3 e3) =

t(1, 1, 1,−1) and h̃(γ′′
4 e4) =

t(3, 1, 1, 1) (see Figure 12).

t(1, 1,−1,−1)
t(1, 1, 1, 1)

t(2, 2, 2, 0)

t(2, 1, 1, 0)�

t(3, 1, 1, 1)

?

t(1, 1, 1,−1)

t(1, 1,−1, 1)

t(2, 0, 0, 0)

t(0, 2, 0, 0)

t(1, 1, 0, 0)
�
�
���

t(1, 2, 1, 0)

6

Figure 12

t(1, 1, 1, 1)

t(1,−1, 1, 1)

t(1, 1, 1,−1)

t(2, 0, 0, 0)

t(0, 0, 2, 0)

t(1, 0, 1, 0)
�

�
��

Moreover, h(f ′−1
1 (Ξ13)) is the union of the diagonals of the octahedra on p(∂P). Since

the barycentric subdivision of an octahedron has 48 tetrahedra, |Γ′′| = 24 · 48 = 1152.

Since ker(q′1) is generated by the conjugates of (γ′′
2 γ

′′
4 )

2
, whose fixed points are contained

in f ′−1
1 (Ξ13) and | ker(q′1)| = |Γ′′|/|Γ′| = 1152/36 = 32, h̃ ker(q′1)h̃

−1 consists of the

following 32 matrices, where ϵi = ±1 and ϵ1ϵ2ϵ3ϵ4 = 1.
ϵ1 0 0 0

0 ϵ2 0 0

0 0 ϵ3 0

0 0 0 ϵ4

 ,


0 ϵ1 0 0

ϵ2 0 0 0

0 0 0 ϵ3
0 0 ϵ4 0

 ,


0 0 ϵ1 0

0 0 0 ϵ2
ϵ3 0 0 0

0 ϵ4 0 0

 ,


0 0 0 ϵ1
0 0 ϵ2 0

0 ϵ3 0 0

ϵ4 0 0 0

 .
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Note that the fixed points of all matrices of order 2 in the above except −I4, are contained
in the diagonals of the octahedra and that any one of order 4 in the above is the product

of two of order 2. The set consisting of ±I4, ±A, ±B and ±C is a normal subgroup of

h̃ ker(q′1)h̃
−1 acting on S3 freely, where

A =


0 1 0 0

−1 0 0 0

0 0 0 1

0 0−1 0

 , B =


0 0 1 0

0 0 0−1
−1 0 0 0

0 1 0 0

 , C =


0 0 0 1

0 0 1 0

0 −1 0 0

−1 0 0 0

 .

Let J = h̃γ′′
0 h̃

−1. Then

J =
1

2


1 1 −1 1

1−1 1 1

1 1 1 −1
1−1−1−1

 .

Hence J3 = −B, JAJ−1 = −A, JBJ−1 = B and JCJ−1 = −C. Since | ker(q′1)/Γ1| = 4

and X2 = −I4 for any element X of order 4 in h̃ ker(q′1)h̃
−1, ker(q′1)/Γ1 ≃ Z2 ⊕ Z2. □

Let T1 = S3/Γ1 and let g′1 : T1 → S3 be the Galois covering induced by f ′
1. Then g′1

ramifies only along Ξ13. Let h1 : DC → T1 be the composite of f1 and the quotient map

S3 → T1 under Γ1. Then h1 ramifies only along g′−1
1 (Ξ24) and f = g′1 ◦h1. Moreover, γ′′

0

induces an automorphism δ1 on T1 with |δ1| = 3, by the above lemma. Let γ′
0 = γ′

1γ
′
2γ

′
3γ

′
4.

Then γ′
0 has no fixed points on S3 and q′1(γ

′′
0 ) = γ′

0. Hence g′1 ◦ δ1 = γ′
0 ◦ g′1. In a similar

way, we obtain Galois coverings g′2 : T2 → S3 ramifying only along Ξ24, h2 : DC → T2

ramifying only along g′−1
2 (Ξ13) with f = g′2 ◦ h2 and an automorphism δ2 on T2 with

|δ2| = 3 such that g′2 ◦ δ2 = γ′
0 ◦ g′2.

DC → T = T1 ×S3 T2 → T0 = T/G0 → T0/⟨δ0⟩ = DC/Γ
0 → S3

Now, to show the existence of a subgroup Γ0 in the theoerm, we construct covering

maps as above, where the left three arrows do not ramify and the right one ramifies

along Ξ13 ∪ Ξ24. Let T = T1 ×S3 T2 be the fiber product of g′1 and g′2. Then T is a

topological manifold, because Ξ13 ∩ Ξ24 = ∅. Since Gal(g′i) ≃ Z2 ⊕ Z2, any bijection

between Gal(g′1) \ {1} and Gal(g′2) \ {1} induces an isomorphism. Hence there exists an

isomorphism ϕ : Gal(g′1) ≃ Gal(g′2) such that ϕ(δ1γδ
−1
1 ) = δ2ϕ(γ)δ

−1
2 for any element γ in

Gal(g′1). Let G0 = {(γ, ϕ(γ)) | γ ∈ Gal(g′1)}. Then G0 has no fixed points on T , because

Ξ13 ∩ Ξ24 = ∅. Let T0 = T/G0 and let g′0 : T0 → S3 be the covering induced by the

natural projection T → S3. Then deg g′0 = 4, because deg g′i = 4. Hence the pull-back of

∆′ under g′0, consists of 36 ·4 = 144 tetrahedra. Let h : DC → T0 be the composite of the

map (h1, h2) and the quotient map T → T0. Then h is a surjective unramified covering,

because it does not ramify along g′−1
0 (Ξ13 ∪Ξ24) and T0 is a topological manifold. Since

(δ1, δ2)G0(δ1, δ2)
−1 = G0, (δ1, δ2) induces an automorphism δ0 on T0 with g′0◦δ0 = γ′

0◦g′0.
Since γ′

0 has no fixed points on S3, so does δ0 on T0. Hence the composite of h and the

quotient map T0 → T0/⟨δ0⟩, is the quotient map under a subgroup of Γ with the index

144/3 = 48 acting on DC freely.
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